Paper Reference(s)

6683/01 Edexcel GCE

Statistics S1

Advanced Level

Friday 18 May 2012 - Afternoon

Time: 1 hour 30 minutes

Materials required for examination

<u>Items included with question papers</u>

Mathematical Formulae (Pink)

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S1), the paper reference (6683), your surname, other name and signature.

Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

This paper has 7 questions.

The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

1.	A discrete	random	variable <i>X</i>	has	the	probability	function

$$P(X=x) = \begin{cases} k(1-x)^2 & x = -1, 0, 1 \text{ and } 2\\ 0 & \text{otherwise.} \end{cases}$$

(a) Show that
$$k = \frac{1}{6}$$
.

(3)

(b) Find
$$E(X)$$
.

(2)

(c) Show that
$$E(X^2) = \frac{4}{3}$$
.

(2)

(d) Find
$$Var(1-3X)$$
.

(3)

A bank reviews its customer records at the end of each month to find out how many customers have become unemployed, u, and how many have had their house repossessed, h, during that month. The bank codes the data using variables $x = \frac{u - 100}{3}$ and $y = \frac{h - 20}{7}$.

The results for the 12 months of 2009 are summarised below.

$$\sum x = 477$$
 $S_{xx} = 5606.25$ $\sum y = 480$ $S_{yy} = 4244$ $\sum xy = 23070$

(a) Calculate the value of the product moment correlation coefficient for x and y.

(3)

(b) Write down the product moment correlation coefficient for u and h.

(1)

The bank claims that an increase in unemployment among its customers is associated with an increase in house repossessions.

(c) State, with a reason, whether or not the bank's claim is supported by these data.

(2)

P40105XA 2

3. A scientist is researching whether or not birds of prey exposed to pollutants lay eggs with thinner shells. He collects a random sample of egg shells from each of 6 different nests and tests for pollutant level, p, and measures the thinning of the shell, t. The results are shown in the table below.

p	3	8	30	25	15	12
t	1	3	9	10	5	6

[You may use
$$\sum p^2 = 1967$$
 and $\sum pt = 694$]

(a) On graph paper, draw a scatter diagram to represent these data.

(2)

(b) Explain why a linear regression model may be appropriate to describe the relationship between p and t.

(1)

(c) Calculate the value of S_{pt} and the value of S_{pp} .

(4)

(d) Find the equation of the regression line of t on p, giving your answer in the form t = a + bp.

(4)

(e) Plot the point (p, t) and draw the regression line on your scatter diagram.

(2)

The scientist reviews similar studies and finds that pollutant levels above 16 are likely to result in the death of a chick soon after hatching.

(f) Estimate the minimum thinning of the shell that is likely to result in the death of a chick.

(2)

4.

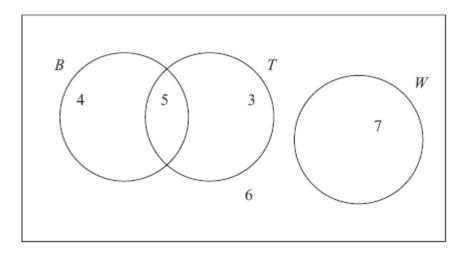


Figure 1

Figure 1 shows how 25 people travelled to work.

Their travel to work is represented by the events

B bicycle

T train

W walk

(a) Write down 2 of these events that are mutually exclusive. Give a reason for your answer.

(2)

(b) Determine whether or not B and T are independent events.

(3)

One person is chosen at random.

Find the probability that this person

(c) walks to work,

(1)

(d) travels to work by bicycle and train.

(1)

Given that this person travels to work by bicycle,

(e) find the probability that they will also take the train.

(2)

P40105XA 4

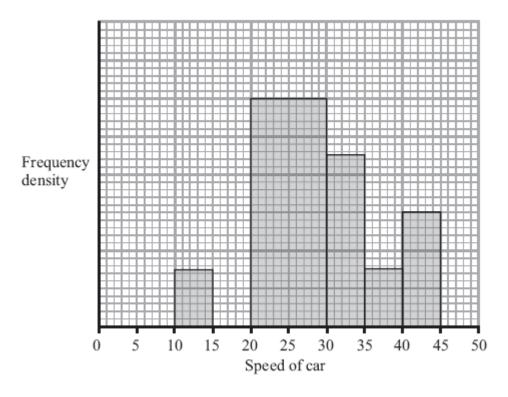


Figure 2

A policeman records the speed of the traffic on a busy road with a 30 mph speed limit.

He records the speeds of a sample of 450 cars. The histogram in Figure 2 represents the results.

(a) Calculate the number of cars that were exceeding the speed limit by at least 5 mph in the sample.

(4)

(b) Estimate the value of the mean speed of the cars in the sample.

(3)

(c) Estimate, to 1 decimal place, the value of the median speed of the cars in the sample.

(2)

(d) Comment on the shape of the distribution. Give a reason for your answer.

(2)

(e) State, with a reason, whether the estimate of the mean or the median is a better representation of the average speed of the traffic on the road.

(2)

6.	The heights of an adult female population are normally distributed with mean 162 cm and standard deviation 7.5 cm.
	(a) Find the probability that a randomly chosen adult female is taller than 150 cm. (3)
	Sarah is a young girl. She visits her doctor and is told that she is at the 60th percentile for height.
	(b) Assuming that Sarah remains at the 60th percentile, estimate her height as an adult. (3)
	The heights of an adult male population are normally distributed with standard deviation 9.0 cm.
	Given that 90% of adult males are taller than the mean height of adult females,
	(c) find the mean height of an adult male. (4)
7.	A manufacturer carried out a survey of the defects in their soft toys. It is found that the probability of a toy having poor stitching is 0.03 and that a toy with poor stitching has a probability of 0.7 of splitting open. A toy without poor stitching has a probability of 0.02 of splitting open.
	(a) Draw a tree diagram to represent this information.
	(b) Find the probability that a randomly chosen soft toy has exactly one of the two defects, poor stitching or splitting open.
	(3)
	The manufacturer also finds that soft toys can become faded with probability 0.05 and that this defect is independent of poor stitching or splitting open. A soft toy is chosen at random.
	(c) Find the probability that the soft toy has none of these 3 defects.
	(2) (d) Find the probability that the soft toy has exactly one of these 3 defects.
	(w) I ma me productify that the soft toy has exactly one of these 5 defects.

END

TOTAL FOR PAPER: 75 MARKS

P40105XA 6

Summer 2012 6683 Statistics S1 Mark Scheme

Question	Scheme	Marks
1.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1
(a)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A1
	$6k = 1 \Rightarrow k = \frac{1}{6} \qquad (*)$	Alcso (3)
(b)	$[E(X)] = -4k (+0+0) + 2k \underline{\text{or}} -2k \underline{\text{or}} -1 \times \frac{4}{6} + 2 \times \frac{1}{6}$	M1
	$=-\frac{1}{3}$ (or -0.5)	A1 (2)
(c)	$[E(X^{2})] = (-1)^{2} \times 4k + (0+0) + 2^{2}k \underline{\text{or}} 4k + 4k \underline{\text{or}} (-1)^{2} \times \frac{4}{6} + 2^{2} \times \frac{1}{6} \text{(o.e.)}$	M1
	$=\frac{4}{3} \qquad (*)$	A1cso (2)
(d)	$[Var(X)] = \frac{4}{3} - \left(-\frac{1}{3}\right)^2 \underline{\text{or }} 8k - 4k^2 = \begin{bmatrix} \frac{11}{9} \end{bmatrix} \qquad \begin{vmatrix} Y = 1 - 3X : 4 & 1 - 2 - 5 \\ \text{Prob:} & 4k & k & 0 & k \\ & & \text{And } E(Y) = 12k \end{vmatrix}$	M1
	$Var(1-3X) = (-3)^2 Var(X)$ or $9Var(X)$ $E(Y^2) = 90k$ and $Var(Y) = 90k - 144k^2$	M1
	= 11	A1 cao (3) [10]
	Notes	
(a)	M1 for attempt at $P(X = x)$ with at least 2 correct. Do not give for 4, 1, etc but	$\frac{4}{6}$, $\frac{1}{6}$ are OK
	1 st A1 for at least $4k + k + k = 1$ seen. Allow $\frac{4}{6} + \frac{1}{6} + \frac{1}{6} = 1$ [Must see = 1]	
	2^{nd} A1cso provided previous 2 marks are scored and no incorrect working seen It's not essential to see $P(X = -1) = 4k$ etc but if wrongly assigned probabil $P(X = 2) = 4k$ and $P(X = -1) = k$ are seen then the final A1 is lost.	ities such as
Verify	To score final A1cso there must be a comment such as "therefore $k = \frac{1}{6}$ "	
		· * 7
(b)	Division by 4 (or any other n) in (b), (c) or (d) is M0. Do not apply IS for a full correct expression for $E(X)$, ft their <u>probabilities</u> . Allow in term	
	A1 for $-\frac{1}{3}$ or exact equivalent only. Just $-\frac{1}{3}$ scores M1A1	
(c)	M1 for evidence of both non-zero terms seen. May be simplified but 2 terms	needed.
	A1cso for M1 seen leading to $\frac{4}{3}$ or any exact equivalent. Condone $-1^2 \times 4k$ but	not -4k
(d)	1 st M1 for correct attempt at $Var(X)$ - follow through their $E(X)$ and allow in term Award if a correct formula is seen and some correct substitution made.	ms of k
	2^{nd} M1 for correct use of $\text{Var}(aX+b)$. Condone $-3^2 \text{Var}(X)$ if it eventually yields for 11 only	9Var(<i>X</i>)

Question	Scheme	Marks		
2. (a)	$\left[S_{xy} = \right] 23070 - \frac{477 \times 480}{12} \left[= 3990 \right]$	B1		
	$r = \frac{"3990"}{\sqrt{5606.25 \times 4244}}$	M1		
	= 0.81799 awrt 0.818	A1 (3)		
(b)	0.818	B1ft (1)		
(c)	Positive correlation <u>or</u> value of r is close to 1 <u>or</u> value of $r > 0$ (NOT "high/ strong correlation")	B1		
	So there is support for the bank's claim or "increase in unemployment is accompanied by increase in house	B1 (2)		
	repossessions"	[6]		
	Notes			
(a)	Marks for part (a) must be seen in (a), do not award if only seen in (b)			
	B1 for a correct expression for S_{xy}			
	M1 for correct attempt at r f.t. their 3990 but $\frac{23070}{\sqrt{5606.25 \times 4244}}$ is M0 A1 for awrt 0.818 If an answer of 0.82 only is seen then B1M1A0 can be give	n		
	AT 101 awit 0.010 If all allswel of 0.02 only is seen their brivitato call be give	11		
(b)	B1ft for awrt 0.818 or f.t. their answer to part (a) for $ r < 1$. Allow 2sf or 1sf follow through Answer in (b) must be correct or match one of their answers in (a). Must be a number.			
(c)	1^{st} B1 for a reason of positive correlation (allow even if $r > 1$) "positive skew" or "positive gradient" is B0 but 2^{nd} B1 is still possible 2^{nd} B1 for a comment that suggest this supports the claim. Marks in (c) are independent but first B1 requires some idea of positive correlation.	relation		
(c) SC	If $ r < 0.2$ allow this alternative to the mark scheme: 1 st B1 for saying there is no or little correlation 2 nd B1 for a comment that says this does <u>not</u> support the bank's claim			

Question	Scheme	Marks
3. (a)	11 10 9 8 7 6 5 4 3 2 1 0 5 10 15 20 25 30 35	Use overlay B1 B1
(b)	Points (appear to) lie close to a (straight) line or "strong /high correlation"	B1 (1)
(c)	$\sum p = 93 \text{and} \sum t = 34$ (may be seen in table) $S_{pt} = 694 - \frac{"93" \times "34"}{6} = [167] \text{or} S_{pp} = 1967 - \frac{"93"^2}{6} = [525.5]$	M1 M1
	$S_{pt} = 167$; $S_{pp} = \text{awrt } 526$	A1; A1 (4)
(u)	$b = \left[\frac{S_{pt}}{S_{pp}}\right] = \frac{"167"}{"525.5"} = \left[0.31779\right]$ (check their answer if expression not seen) $a = \frac{"34"}{6} - "0.31779" \times \frac{"93"}{6} = 5.666 0.31779 \times 15.5 = ,0.74088 \text{ awrt } 0.74$	B1ft M1, A1
	6 6 6 $t = 0.741 + 0.318p$ (Accept $a = \frac{2336}{3153}$ and $b = \frac{334}{1051}$ in their equation)	A1 (4)
(e)	$(\overline{p},\overline{t})$ = (15.5, 5.7) plotted on the graph (not wholly outside the circle) Correct line plotted as per overlay. For $p = 5$; $2 < t < 3$ and for $p = 30$; $10 < t < 11$ Their line must stretch roughly as far as the points and go through the $(\overline{p},\overline{t})$ circle	B1 B1 (2)
(f)	$t = "0.741" + "0.318" \times 16$ = 5.825 awrt 5.8	M1 A1 (2) [15]
	Notes Page 1961 - 1961	1 1 1 1
(a) (c)	B2 for all 6 data points plotted correctly. B1 for any 5 correct. Points not wholly outsi 1^{st} M1 for attempting $\sum p$ and $\sum t$. Allow $80 < \sum p < 100$ and $30 < \sum t < 40$ 2^{nd} M1 for one correct expression for S_{pt} or S_{pp} , f.t. their $\sum p$ and $\sum t$. 1^{st} A1 for S_{pp}	
(d)	B1ft for correct expression for the gradient, f.t. their 167 and 525.5 from (c) M1 for correct use of $a = \overline{t} - b\overline{p}$ f.t. their values. Condone 5.6 for \overline{t} 1 st A1 for awrt 0.74 NB use of 526 gives 0.745566 and gets A0 2 nd A1 for a correct equation for t in terms of p with a and b awrt 3sf An equn in y	or x is A0
(f)	M1 for clear use of their line (equation or on graph) and $p = 16$ to estimate t . This may be an expression or lines marked on the diagram for awrt 5.8, even if their line is not fully correct. Accept " $t > 5.8$ "(oe). Ans	wer only 2/2

Question	Scheme	Mar	ks
4. (a)	$B, W \text{ or } T, W \text{ [accept } B \cup T, W \text{ or } B \cap T, W \text{] [Condone P(B), P(W) etc]}$	B1	
	Since there is no <u>overlap</u> between the events <u>or</u> cannot happen together (o.e.) (Accept comment in context e.g. "no one walks and takes the train")	B1	(2)
(b)	e.g. $P(B) = \frac{9}{25}$, $P(T) = \frac{8}{25}$, $P(B \cap T) = \frac{5}{25}$	M1	
	$P(B \cap T) \neq P(B) \times P(T)$ [0.2 \neq 0.36 \times 0.32 = 0.1152 o.e.]	M1	
	So B and T are <u>not</u> independent	A1cso	(3)
(c)	$[P(W) =] \frac{7}{25} \text{ or } 0.28$	B1	(1)
(d)	$[P(B \cap T) =] \frac{5}{25} \underline{\text{or}} \frac{1}{5} \underline{\text{or}} 0.2$	B1	(1)
(e)	$[P(T \mid B) =] \frac{P(T \cap B)}{P(B)} = \frac{\text{"(d)"}}{(5+4)/25}$	M1	
	$=\frac{5}{9}$ or 0.§	A1	(2)
			[9]
()	Notes	D' 4	
(a)	1 st B1 for a suitable pair. Do not accept universally exclusive pairs such as B and D and D and D and D and D are D and D and D are D and D are D a) etc
(b)	 1st M1 for an attempt at all required probabilities with labels for a suitable test (allowaccept use of A and B as long as they can be identified as B and T by correct Must be probabilities not integers such as 5, 9, 8 etc for both these M marks 2nd M1 for P(B)×P(T) evaluated (correct for their probabilities) or P(B∩T) ≠ P(B)×P(T) stated or implied in symbols or using their probabilities or P(B T) ≠ P(B) or P(T B) ≠ P(T) stated or implied in symbols or using their probabilities A1 for a conclusion of not independent. Requires all probabilities used to be contained in the probabilities and the probabilities are the probabilities are the probabilities and the probabilities are the probabilit	probabil s. probabili	ities ties.
	NB $P(B T) = \frac{5}{8} & P(B) = \frac{9}{25}$ or $P(T B) = \frac{5}{9} & P(T) = \frac{8}{25}$ seen, followed by conclusion scores 3/3	y a corre	et
(e)	M1 for a correct ratio of probabilities e.g. $\frac{\frac{5}{25}}{\frac{(5+4)}{25}}$ or $\frac{5}{5+4}$ or A correct ratio expression and at least one correct (or correct f.t.) probability substituted. A1 for $\frac{5}{9}$ with no incorrect working seen but $\frac{5}{9}$ following from $P(B \mid T)$ is $0/2$. $\frac{5}{9}$ alone is $2/2$		

Question	Scho	eme	Marks		
5. (a)	One large square = $\frac{450}{"22.5"}$ or one small	square = $\frac{450}{1.562.5}$ (o.e. e.g. $\frac{562.5}{450}$)	M1		
	One large square = $20 \text{ cars } \underline{\text{or}}$ one small No. > 35 mph is: $4.5 \times "20" \underline{\text{or}}$ 112.5×	square = $0.8 \text{ cars } \underline{\text{or}} 1 \text{ car} = 1.25 \text{ squares}$	A1 dM1 A1 (4	4)	
(b)	$\left[\overline{x}\right] = \frac{30 \times 12.5 + 240 \times 25 + 90 \times 32.5 + 30}{450}$		M1 M1		
		= 28.83 or $\frac{173}{6}$ awrt 28.8	A1 (3	3)	
(c)	$[Q_2 =]20 + \frac{195}{240} \times 10$ (o.e.) [Allow us	se of $(n + 1)$ giving 195.5 instead of 195]	M1	2)	
	= 28.125 [Use of $(n +$	1) gives 28.145] awrt <u>28.1</u>	A1 (2	2)	
(d)		[Condone $Q_2 \approx \overline{x}$] [so (almost) <u>symmetric</u>]	B1ft		
	So positive skew	[so (almost) symmetric]	dB1ft (2)	.)	
(e)	[If chose skew in (d)] median (Q_2)	[If chose <u>symmetric</u> in (d)] mean (\overline{x})	B1	,	
	Since the data is skewed or median not affected by extreme values	Since it uses all the data	dB1 (2	(د)	
	No	tas	[13	3]	
(a)	1 st M1 for attempt to count squares (ad	ccept "22.5" in [22, 23] and "562.5" in [55			
	use 450 to obtain a measure of 1 st A1 for a correct calc. for 20 or 0.8	scale. [If using fd must use 450 to obtain sor 1.25 etc.	scale factor]	İ	
	[May be $fd = 4$ to 1 large sq. or	0.8 to 1 small sq. May be on the diagram.			
	2 nd Al for 90 with no incorrect workin	nting squares for > 35 mph and forming suggesten.	litable expr		
	e.g. $\frac{4.5}{22.5} \times 450$ scores M1A1M1 and A1 when = 90 is seen. Answer only is 4/4				
(b)	1^{st} M1 for clear, sensible use of mid-poi 2^{nd} M1 for an expression for \overline{x} (at least 3 denominator)	nts at least 3 of (12.5, 25, 32.5, 37.5, 42.5) 3 correct terms on num' and a compatible) seen		
	Follow through their frequencies				
	You may see these fractions: $\frac{16218.75}{562.5}$ (small A1 for awrt 28.8 (answer only is 3/3)	Il squares), $\frac{12975}{450}$ (frequencies), $\frac{648.75}{22.5}$ (large	e squares)		
	,				
(c)	M1 for a full expression for median (using their frequencies). May see e.g. 25+	$-\frac{75}{120} \times 5$ etc	.c	
	Do nor accept boundaries of 19.5		120		
(1)	1 st B1ft for a correct statement about t	heir Q_2 and \overline{x} [Condone $Q_2 \approx \overline{x}$ only if $ q $	$Q_2 - \overline{x} < 1$		
(d) Do not accept an argument based on the shape of the graph alone. 2^{nd} dB1ft dependent on 1^{st} B1 for a <u>compatible</u> description of skewness. F.t. their values			·		
Quartiles		n allow comparison of quartiles for 1 st B1			
(e)	1 st B1 for a correct choice based on their s 2 nd dB1 for a suitable compatible comme	kewness comment in (d). If no choice made in	n (d) only Q_2	2	
	2 abi for a suffacion companione commit	****			

Question	Scheme	Marks		
6. (a)	$\left[z=\right] \pm \left(\frac{150-162}{7.5}\right)$	M1		
	[z =]-1.6	A1		
	[P(F > 150) = P(Z > -1.6) =] = 0.9452(0071) awrt <u>0.945</u>	A1 (3)		
<i>a</i> >		D1		
(b)	$z = \pm 0.2533$ (or better seen)	B1		
	$z = \pm 0.2533$ (or better seen) $z = \pm 0.2533$ (or better seen) $z = \pm 0.2533$ (or better seen) s = 163.9 awrt <u>164</u>	M1 A1 (3)		
		,		
(c)	$z = \pm 1.2816 \text{ (or better seen)}$ $162 - u$	B1 M1		
	$\frac{162 - \mu}{9} = -1.2815515$	A1		
	$\mu = 173.533$ awrt <u>174</u>	A1 (4)		
	Notes	[10]		
(a)	M1 for attempting to standardise with 150, 162 and 7.5. Accept ±			
	Allow use of symmetry and therefore 174 instead of 150 1st A1 for -1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.945(2) is A1. 2nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 – 0.9452 then award A0 Correct answer only 3/3			
(b)	 B1 for (z =) ± 0.2533 (or better) seen. Giving z = ± 0.25 or ± 0.253 scores B0 here but may get M1A1 M1 for standardising with s (o.e.), 162 and 7.5, allow ±, and setting equal to a z v Only allow 0.24 ≤ z ≤ 0.26 Condone e.g. 160 for 162 etc A1 for awrt 164 (Correct answer only scores B0M1A1) 	value		
(c)	B1 for (z =) ± 1.2816 (or better) seen. Allow awrt ± 1.28 if B0 scored in (b) for z = awrt± 0.25 M1 for attempting to standardise with 162, 9 and μ, and setting equal to a z value where 1.26 < z < 1.31. Allow ± here so signs don't have to be compatible. 1st A1 for a correct equation with compatible signs and 1.26 < z < 1.31 2nd A1 for awrt 174 (Correct answer only scores B0M1A1A1). Dependent on 1st A1			
	An equation $\frac{162 - \mu}{9} = 1.2816$ leading to an answer of $\mu = 174$ is A0A0 <u>unless</u> then			
	correct working such as: $\frac{162 - x}{9} = 1.2816 \Rightarrow x =$: $\mu = 162 + (162 - x) = 174$ then	award A1A1		
NB	A common error is: $\frac{162 - \mu}{9} = 1.2816$ followed by $\mu = 162 + 9 \times 1.2816 = \text{awrt } 174$			
	A0A0			

Question		Scheme	Marks
7.	(a)	0.7 Split (0.021) Shape	B1
		Poor Stitching Labels & 0.03	B1
		0.03 No split (0.009) Labels & 0.7,0.02	B1
		(0.97) Split (0.0194)	(3)
		No Poor Stitching	
		(0.98) No split(0.9506)	
	(b)	P(Exactly one defect) = $0.03 \times 0.3 + 0.97 \times 0.02$ or $P(PS \cup Split) - 2P(PS \cap Split)$ = $[0.009 + 0.0194 =]$ 0.0284	M1A1ft A1 cao (3)
	(c)	P(No defects) = $(1-0.03) \times (1-0.02) \times (1-0.05)$ (or better) = 0.90307 awrt <u>0.903</u>	M1 A1 cao (2)
	(d)	P(Exactly one defect) = $(b) \times (1-0.05) + (1-0.03) \times (1-0.02) \times 0.05$	M1 M1
		= "0.0284" $\times 0.95 + 0.97 \times 0.98 \times 0.05$ = $[0.02698 + 0.04753] = 0.07451$ awrt <u>0.0745</u>	A1ft A1 cao (4) [12]
		Notes	[==]
	(a)	Allow MR of 0.2 for 0.02 or 0.3 for 0.03 on tree diagram to score all M and A11 1 st B1 for 2 branch then 4 branch shape 2 nd dB1 dep. on 1 st B1 for labels showing stitching (accept letters) and 0.03 value co 3 rd dB1 dep. on 1 st B1 for labels showing splitting and 0.7 and 0.02 correctly placed [probabilities shown in brackets are not required and any such values given can be in	orrectly placed
	(b)	M1 for $0.03 \times p + 0.02 \times q$ where p and q follow from their tree diagram. Extr 1^{st} A1ft for a fully correct expression. Accept $1-0.7$ for 0.3 and $1-0.03$ for 0.97	ra terms is M0
	MR	Follow through 0.2 and 0.3 MR only 0.2 for 0.02 \rightarrow 0.203 or 0.3 for 0.03 \rightarrow 0.104 or both \rightarrow 0.23 should score M1A1 2^{nd} A1 cao for 0.0284 only (or exact equivalent such as $\frac{71}{2500}$)	A0
	(c)	Do not allow 0.5 as MR of 0.05 so no M or A marks in (c) or (d) M1 for (their 0.97)×(their 0.98)×(1-0.05) (or better) f.t. values from their to A1 cao for awrt 0.903	ree diagram
	(d)	1 st M1 for one correct triple (or correct ft from their tree) of: $ [0.03 \times 0.3 \times (1-0.05)] + [0.97 \times 0.02 \times (1-0.05)] + [0.97 \times 0.98 \times 0.05] $	
		2 nd M1 for two correct triples or correct ft from their tree and adding <u>or</u> their (b)	$\times (1-0.05)$
	MR	1^{st} A1ft for a fully correct expression or f.t. their (b) and 0.2 or 0.3 MR only 0.2 for $0.02 \rightarrow 0.23165$ or 0.3 for $0.03 \rightarrow 0.1331$ or both $\rightarrow 0.2465$ (or awrt 3sf) score 2^{nd} A1 cao for awrt 0.0745	,